Loading Posts...

Углеродные наноструктуры – удивительное зарождение нанотехнологий

В 1972 г. П. Уокер, редактор книг «Химия и физика углерода», заявил, что новая глава в истории материалов не завершена: человечеству еще предстоит открыть удивительные свойства углерода ― «старого, но в то же время нового материала». Это высказывание оказалось пророческим.

Абсолютно все растения и животные (в том числе человек) состоят из углерода, который является неотъемлемой частью структуры жиров, белков и углеводов. В нашей галактике углерод содержится не только в чистом виде — в форме пара, но и в соединениях с водородом и азотом, и даже в составе метеоритов. В космосе его чуть меньше, чем кислорода, водорода и гелия. А вот в земных породах углерода относительно мало — 0,15 %, которые распределяются между кристаллами лонсдейлита, алмаза и графита, а также угля и шунгита.

Кроме того, углерод объединяет в себе совершенно противоположные свойства. Он может притягиваться к магниту и отталкиваться, хорошо или плохо проводить ток, пропускать либо не пропускать тепло, проявлять признаки идеально прозрачного и абсолютно черного тела, максимально твердого и очень мягкого материала и пр.

Одна из модификаций углерода — графен, который представляет собой тонкий слой атомов, расположенных в форме шестиугольных ячеек, и является составной частью более сложного кристалла графита, — была известна химикам уже в ХIX в. Так, в 1859 г. британский ученый Бенджамин Броуди обработал графит сильными кислотами, в результате чего образовался оксид графена. Проблема была в том, что в позапрошлом веке никто еще не умел проводить детализованный анализ двумерных кристаллов. Долгое время ученые вообще сомневались, что подобные атомные конструкции могут существовать в свободном виде: даже в 1930-х советский физик Л. Ландау и его английский коллега Р. Пайерлс заявляли, будто плоские кристаллы вроде графена слишком нестабильные и хрупкие.

Читать:  Одежда будущего

В 1948 г. Дж. Руесс и Ф. Фогт исследовали графен просвечивающим электронным микроскопом и увидели, что толщина этого кристалла не превышает нескольких нанометров. Впрочем, объект исследования был не чистым графеном — истинные габариты этой структуры измерила другая пара ученых, У. Хоффман и Х.-П. Бем, которые восстановили оксид графита и получили отдельные слои толщиной в атом. А в 1970 г. Дж. Грант и Блэкли впервые вырастили графеновые решетки на металлических пластинах.

Однако лишь в 2004 г. русским физикам Константину Новоселову и Андрею Гейму, работавшим тогда в Британии, удалось получить чистый графен. Для этого им понадобились кремниевая подложка, кусок графита и… скотч. Графит расплющивался прессом на подложке, а затем слой за слоем «отшелушивался» скотчем, пока на пластине не оставался всего один слой. Этот слой и был графеном. В 2010 г. Гейм и Новоселов получили Нобелевскую премию по физике, а в следующем году королева Елизавета пожаловала им титул рыцарей-бакалавров.

Впоследствии выяснилось, что двумерные кристаллы углерода имеют уникальные свойства и могут стать основой для материалов будущего. Во-первых, графен — суперпрочный и почти невесомый: при толщине в атом он не пропускает пули (потому подойдет для бронежилетов и обшивки космических челноков) и выдерживает вес взрослого крупного человека. Во-вторых, он является отличным проводником электричества и предупреждает ржавление железа.

Читать:  Супермощь новых материалов

С открытиями фуллерена и графена тесно связано наблюдение углеродных нанотрубок — одно- или многослойных графеновых решеток, «скрученных» валиком. Официально эти трубки обнаружил японский физик С. Иидзима в 1991 г., хотя в действительности впервые их заметили советские ученые, причем почти на полвека раньше. В 1952 г. Л. Радушкевич и В. Лукьянович с помощью электронного микроскопа сделали снимок углеродных наноструктур. Подобные снимки как простых, так и сложных трубок в 1976 г. получили японские ученые под руководством Моринобу Эндо. В конце 1970-х академики из Института катализа СССР исследовали образование углерода в железохромовых ускорителях реакций отщепления воды, как вдруг заметили «пустотелые углеродные дендриты». Понаблюдав за образованием этих структур, ученые детально описали сам процесс, а также строение трубок.

Пятью годами позже вышла статья А. Нестеренко с фотографиями многостенных кристаллических трубок, которые впервые были представлены в виде скрученной рулоном графеновой решетки. Увы, в то время разрешение микроскопов было недостаточно высоким для подробного изучения наноструктур, поэтому «первооткрыватели» не смогли по достоинству оценить их свойства.

Читать:  Двумерное олово: новый чудо-материал

Сделать это удалось именно Иидзиме, который догадался, что нанотрубки можно создавать самостоятельно, воздействуя электрическим разрядом на распыленный графит. Измерив полученный образец, ученый выяснил, что диаметр трубки составляет несколько нанометров, а длина — в тысячу раз больше. По структуре трубка может быть как одностенной, простой, так и составной, устроенной по принципу матрешки, — но в любом случае каждая стенка представляет собой графитовую решетку с шестиугольными ячейками, а окончания трубок похожи на половину молекулы фуллерена.

Сейчас ученые самых разных областей — химики, медики, физики, математики, астрономы и пр. — чуть ли не соревнуются, исследуя свойства фуллерена и пытаясь на их основе создавать новые углеродные материалы. Недаром японский ученый Э. Осава сказал, что если бы не был открыт фуллерен и нанотрубки, то еще несколько десятилетий никто бы ничего не знал о нанотехнологиях.

Как ни странно, ученые и поныне спорят, каким способом синтезируются углеродные наноструктуры, и предлагают свои модели этого процесса. Тем не менее новые суперпрочные материалы уже активно используются в разных отраслях промышленности. Например, из углеродных наноструктур изготовляются гибкие электроприборы и разнообразные транзисторы, фотодетекторы, оптические модуляторы и поляризаторы света, лазеры и генераторы терагерцевых излучений, приложения для хранения и генерации энергии. А еще — краски, покрытия, высокопрочные композитные материалы вроде углепластика и многое другое.

Подписаться
Уведомление о
guest
0 комментариев
Inline Feedbacks
View all comments