Connect with us

Физика

Квантовая теория

Конец XIX ― начало XX в. ознаменовались рождением новых научных концепций, которые в корне изменили привычную картину мира. В 1887 г. американские физики Эдвард Морли и Альберт Майкельсон захотели экспериментально подтвердить традиционные представления о том, что свет (то есть электромагнитные колебания) распространяется в особой субстанции — эфире, подобно тому как звуковые волны перемещаются в пространстве посредством воздуха.

Даже не предполагая, что их опыт покажет абсолютно противоположный результат, ученые направили световой луч на полупрозрачную пластину, расположенную под углом 45° к источнику света. Луч раздвоился, частично пройдя сквозь пластину, а частично отразившись от нее под прямым углом к источнику. Распространяясь с одинаковой частотой, оба луча отразились от установленных перпендикулярно зеркал и вернулись к пластине. Один отразился от нее, другой прошел сквозь, и при наложении одного луча на другой на экране появились полосы интерференции. Если бы свет перемещался в некой субстанции, так называемый эфирный ветер должен был бы сдвигать интерференционную картину, но за полгода наблюдений ничего не изменилось. Так Майкельсон и Морли поняли, что эфира не существует, а свет может распространяться даже в вакууме — абсолютной пустоте. Это дискредитировало основное положение классической ньютоновской механики о существовании абсолютного пространства — фундаментальной системы отсчета, относительно которой эфир пребывает в покое.

Еще одним «камнем» в сторону классической физики стали уравнения шотландского ученого Джеймса Максвелла, показавшие, что свет движется с ограниченной скоростью, которая не зависит от системы «источник — наблюдатель». Эти открытия послужили толчком к формированию двух абсолютно новаторских теорий: квантовой и теории относительности.

В 1896 г. немецкий физик Макс Планк (1858—1947) приступил к исследованию тепловых лучей — в частности, их зависимости от текстуры и цвета излучающего объекта. Интерес к данной теме у Планка возник в связи с мысленным экспериментом его соотечественника Густава Кирхгофа, проведенным в 1859 г. Кирхгоф создал модель абсолютно черного тела, представляющего собой идеальную непрозрачную емкость, которая поглощает все падающие на нее лучи и не выпускает их наружу, «вынуждая» многократно отражаться от стенок и терять энергию. Но если это тело нагревать, оно начнет испускать излучение, причем, чем выше будет температура нагрева, тем короче длины лучевых волн, а значит, из невидимого спектра лучи перейдут в видимый. Тело сначала покраснеет, а затем станет белым, ведь его излучение соединит в себе весь спектр. Испускаемое и поглощаемое излучения придут в равновесие, то есть их параметры станут одинаковыми и независимыми от вещества, из которого сделано тело, — энергия будет поглощаться и выделяться в равных количествах. Единственным фактором, способным повлиять на спектр излучений, останется температура тела.

Узнав о выводах Кирхгофа, многие ученые задались целью измерить температуру черного тела и соответствующие ей длины волн испускаемых лучей. Разумеется, делали они это методами классической физики — и… заходили в тупик, получая совершенно бессмысленные результаты. С повышением температуры тела и, соответственно, уменьшением длины волны излучения до ультрафиолетового спектра интенсивность волновых колебаний (плотность энергии) возрастала до бесконечности. А между тем эксперименты показывали обратное. И правда, разве лампа накаливания светит ярче трубки Рентгена? И разве можно нагреть черный кубик так, чтобы он стал радиоактивным?

Чтобы устранить данный парадокс, названный ультрафиолетовой катастрофой, Планк в 1900 г. нашел оригинальное объяснение тому, как ведет себя энергия излучения абсолютно черного тела. Ученый предположил, будто атомы, колеблясь, выпускают энергию строго дозированными порциями — квантами, причем, чем короче волна и выше частота колебаний, тем квант больше, и наоборот. Для описания кванта Планк вывел формулу, согласно которой величину энергии можно определить по произведению частоты волны и кванта действия (постоянной, равной 6,62 × 10-34 Дж/с).

В декабре ученый изложил свою теорию членам Немецкого физического общества, и это событие положило начало квантовой физике и механике. Впрочем, из-за неподтвержденности реальными опытами открытие Планка вызвало интерес далеко не сразу. Да и сам ученый поначалу представлял кванты не материальными частицами, а математической абстракцией. Лишь пять лет спустя, когда Эйнштейн нашел обоснование фотоэлектрическому эффекту (выбиванию электронов из вещества под действием света), объяснив это явление «дозированием» излучаемой энергии, формула Планка нашла свое применение. Тогда уже всем стало ясно, что это не пустые домыслы, а описание реального явления на микроуровне.

Кстати, сам автор теории относительности очень высоко оценил работу коллеги. По словам Эйнштейна, заслуга Планка состоит в доказательстве того, что не только материя складывается из частиц, но и энергия. Более того, Планк нашел квант действия — постоянную, связывающую частоту излучения с величиной его энергии, и это открытие перевернуло физику с ног на голову, пустив ее развитие в ином направлении. Эйнштейн предсказал, что именно благодаря теории Планка станет возможным создать модель атома и понять, как ведет себя энергия при распадах атомов и молекул. По словам великого физика, Планк разрушил основы ньютоновской механики и показал новый путь в познании мироустройства.

Ныне постоянная Планка применяется во всех уравнениях и формулах квантовой механики, разделяя макромир, живущий по законам Ньютона, и микромир, где работают квантовые законы. К примеру, этот коэффициент определяет масштабы, в которых действует принцип неопределенности Гейзенберга — то есть невозможности предугадывать свойства и поведение элементарных частиц. Ведь в квантовом мире все объекты имеют двойственную природу, возникая в двух местах одновременно, проявляясь как частица в одной точке и как волна — в другой и пр.

Таким образом, открыв кванты, Макс Планк основал квантовую физику, способную объяснять явления на атомном и молекулярном уровнях, что не под силу физике классической. Его теория стала базой для дальнейшего развития этой научной сферы.

Наш канал в Телеграм
Продолжить чтение
1 Comment

1 Comment

  1. виктор

    at

    Автор данной статьи выдвигает идею о том, что время-пространство изначально само по себе, объективно имеет единую природу, динамичную единую форму, проявляющую себя, естественно, на уровне микро-и макромира. Это уже более чем время-пространство, это уже время-пространство-энергия-материя. Или единая первичная элементарная частица (ЕПЭЧ), проявляющая себя как новый научный закон.

    Доказательство этого положения осуществляется методом построения некой динамической модели времени-пространства-энергии-материи с последующей проверкой ее при объяснении многих современных вопросов квантовой физики и космологии.

    Скорее всего, можно считать, что единственно приемлемым и единственно возможным первоисточником энергии-материи является замкнутое время – время движется по кругу в пространстве или некая сила замкнутая сама на себя. Основное свойство такого времени, естественно, является ее вечное движение. Конечно, в пространстве оно может располагаться как угодно. Но смысловое значение, вероятнее всего, имеет следующая модель.

    Замкнутое время расщепляется на две пары сил. Первая пара: время с левым кручением и, как противовес ему, время с правым кручением. Вторая пара сил рассматривается как некий парадокс: одновременное сжатие/растяжение пространства. С перетеканием энергии из фазы сжатия в фазу растяжения и наоборот.

    Результирующая сила получается как логарифмическая спираль, поскольку она обладает свойством бесконечного кручения. В конечном счете, образуется спираль времени-пространства, имеющая архитектуру, подобную архитектуре молекуле ДНК. Такая модель не противоречит и современным физическим представлениям о природе времени-пространства, в частности, теории струн.

    Степень сжатия/растяжения времени-пространства равна 10/7 за один полный оборот замкнутого времени. Следующее парадоксальное свойство замкнутого времени, в условиях ее бесконечно малой размерности, заключается в том, что оно одновременно имеет форму круга и линии (диаметра). Отношение между этими понятиями, как известно, есть π.

    Обобщая изложенное, если попробовать формализовать такое бесконечное движение, такую модель замкнутого времени, то приходим к следующей формуле: 10/7 = t log π (kπ).

Leave a Reply

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Города и страны4 дня назад

Лучшие курорты Италии: топ 10

Медицина4 дня назад

Идеальные Улучшения: Брекеты и Как Выбрать Подходящую Стоматологию

Климат1 неделя назад

Климат в Кризисе: Путь к Устойчивому Будущему на Земле

Города и страны1 неделя назад

Идеальная Студия в Нижнем Новгороде: Ваш Уютный Уголок в Сердце Города

Солнечная система3 недели назад

Тайны Япета: Открытие, Исследования и Загадки Уникального Спутника Сатурна

Медицина3 недели назад

Выбор будущего дома: как найти идеальный пансионат для пожилых

Животные3 недели назад

Ваш питомец в надёжных руках: как выбрать лучшую ветеринарную клинику

Космические миссии4 недели назад

Диона: Загадочный мир в системе Сатурна

Космические миссии4 недели назад

Мимас: Тайны маленького спутника Сатурна

Солнечная система4 недели назад

Титан: Что известно о спутнике Сатурна?

Медицина4 недели назад

Уникальный и удобный подход к выбору стоматологии

Информационные технологии4 недели назад

Математика и физика: персональный подход и интерактивные инструменты обучения в “Тетрике”

Copyright © 2024 "Мир знаний"