Волновая природа света

О том, что луч света резко меняет направление, когда попадает из одной прозрачной среды в другую (например, из воздуха в воду), знали еще в Древней Греции. Тем не менее четко описать это явление и сформулировать его законы первым сумел голландский астроном эпохи Возрождения Виллеброрд Снелл ван Ройен, или Снеллиус (1580—1626).

Так, именно Снеллиус одной формулой доказал: если умножить показатель преломления (отношение скорости света в вакууме к скорости в заданной среде) на синус угла между лучом и воображаемым перпендикуляром к линии раздела, мы получим постоянную величину. Другими словами, ученый выявил, что синус угла падения луча и синус его преломления в конкретной субстанции пропорциональны, и их соотношение определенным образом характеризует две пограничные среды.

Интересно, что французский ученый Рене Декарт (1596—1650) сформулировал этот закон одновременно со Снеллиусом — а помимо того экспериментальным путем объяснил явление радуги. В трактате «Рассуждение о методе» ученый посвятил этому оптическому явлению целую главу, в начале которой описал наблюдение, что радуга возникает не только в небе, а в любом месте, где есть водные капли, освещенные лучами солнца. Это означает, заключил Декарт, что радугу создает именно свет, который определенным образом проходит сквозь капли — попадая внутрь, преломляется, отражается от стенок, снова преломляется и выходит наружу, возвращаясь к наблюдателю.

В подтверждение своей теории ученый налил воды в прозрачный круглый сосуд, чтобы получилась увеличенная версия капли, затем встал спиной к солнцу и расположил сосуд на некотором расстоянии впереди, напротив светила. В итоге нижняя часть «капли» окрасилась в ярко-красный цвет и оставалась такой даже тогда, когда Декарт приближался к сосуду, двигал его из стороны в сторону или вращал. Измерения показали, что между наблюдателем, каплей и солнцем образуется угол 42°. При увеличении угла красный цвет исчезал, а при уменьшении разделялся на желтый, зеленый и другие цвета.

Проанализировав все данные, ученый выяснил: большинство лучей, которые дважды преломились в капле и один раз отразились, при возвращении к наблюдателю отклоняются от первоначального направления на 41—42°; небольшая часть преломленных лучей падает под меньшим углом, но под большим — ни одного. Если же луч и отразился, и преломился в капле дважды (именно такие капли составляют «вторичную радугу»), то, скорее всего, он отклонится от исходного на 51—52° или больше.

Читать:  Электрон: как открыли элементарную частицу, переносящую заряд

Всего Декарт исследовал 10 тысяч лучей, преломляющихся в каплях воды, и сделал вывод, что примерно 8,5 тысячи из них возвращаются к наблюдателю под углом 41,5° к исходящему от источника-солнца лучу. Из капель, через которые прошли эти лучи, и складывается первичная, яркая радуга.

Уже после смерти Декарта, а именно в 1672 г., английский ученый Исаак Ньютон (1643—1727) в процессе усовершенствования оптической техники открыл явление дисперсии — разложения светового потока на отдельные лучи. Ньютон направил на призму пучок света, и тот, пройдя через преломляющую среду, превратился в разноцветную радугу. Впоследствии было доказано, что подобным способом можно соединить в единый белый поток лучи с разной длиной волны.

На основе своих экспериментов Ньютон написал труд «Оптика», дополнив выводы Декарта объяснением, что тот или иной цвет радуги напрямую зависит от угла преломления луча. Кроме того, ученый решил точно определить цвета спектра и сначала насчитал всего пять: красный, желтый, зеленый, синий, пурпурный. Потом ему открылся еще и шестой — оранжевый, но поскольку 6 для Ньютона было «дьявольским числом», он упорно взялся искать седьмой цвет. И нашел! Это был фиолетовый — или, по терминологии самого ученого, индиго. Все цвета расположены в порядке возрастания угла преломления: красный изгибается под наименьшим углом, а фиолетовый — под наибольшим. Так, благодаря Ньютону радуга официально была признана такой, какой мы ее знаем с самого детства.

Между тем датский физик Эразм Бартолин (1625—1698) обнаружил, что в кристалле исландского шпата поток света раскладывается на два луча, которые при вращении кристалла тоже поворачиваются. Поскольку один из лучей не нарушал закона преломления света, а другой изгибался под каким-то странным углом, ученый назвал их соответственно обыкновенным и необыкновенным, а само явление — двойным преломлением. Впрочем, поэкспериментировав, Бартолин выявил, что при определенном направлении световой поток в кристалле не распадается.

Почему так происходит, выяснил нидерландский физик и астроном Христиан Гюйгенс (1629—1695). Как оказалось, свойства кристалла в разных направлениях неодинаковы, и если луч не раздвоился, то он прошел вдоль так называемой оптической оси. Кристаллы с одной осью (кварц, турмалин, шпат) Гюйгенс назвал одноосными, а с двумя (слюда, гипс) — двуосными. В направлениях, расположенных под одним углом к оси, свойства одноосного кристалла не меняются. Плоскость, на которой лежат ось и луч, называется главным сечением кристалла.

Читать:  Закон всемирного тяготения

Данные выводы вплотную приблизили Гюйгенса к открытию поляризации света. Как выяснилось в ходе дальнейших наблюдений, обыкновенный луч распространяет свои колебания перпендикулярно главному сечению, а у необыкновенного плоскость колебаний совпадает с плоскостью сечения. Выйдя из кристалла, лучи направляются в одну сторону, но их поляризация (то самое направление колебаний) остается разной.

Несмотря на все эти наблюдения, многие ученые XVIII в. были приверженцами корпускулярной теории света, согласно которой световой поток представляет собой прямолинейное движение частиц-корпускул. Впрочем, данная теория не могла объяснить таких явлений, как поляризация, интерференция и дифракция, потому ученым в конце концов просто пришлось вспомнить подзабытую концепцию световых волн.

Первым раскритиковать корпускулярную теорию рискнул английский ученый широкого профиля Томас Юнг (1773—1829). Особый акцент он сделал на том, что данная концепция не объясняет, почему из слабых и мощных источников частицы света вылетают на одной скорости и почему на границе двух разных сред одни лучи преломляются, а другие отражаются.

Дабы устранить эти противоречия, Юнг предложил альтернативную концепцию: мол, свет — не что иное, как колебание частиц в упругом и разреженном эфире, заполняющем собой всю Вселенную. Ради доказательства своей точки зрения ученый показал, как происходит интерференция света: напротив окна он установил экран с двумя близко расположенными отверстиями, а за этим экраном поставил еще один. Падая из окна на первый экран, поток света проходил через отверстия в виде двух отдельных пучков и двумя перекрывающимися конусами «врезался» во второй экран, образуя на нем интерференционные полосы.

Стоило Юнгу закрыть одно из отверстий в первом экране, как вместо полос появлялись дифракционные кольца. Это явление ученый объяснил тем, что световая волна, прошедшая сквозь отверстие, наложилась на собственное отражение от экрана. Юнгу даже удалось вычислить длины волн каждого цвета — для этого он попросту измерил промежутки между кольцами.

Читать:  Второй закон термодинамики

Позицию Юнга поддержал французский физик О. Ж. Френель (1788—1827), который сам поставил целую серию оптических опытов, а выводы изложил в труде, посвященном дифракции. Работа попала на конкурс Французской АН, и судить ее взялись маститые академики Д. Ф. Араго, П. С. Лаплас, Ж. Л. Гей-Люссак и пр., которые придерживались традиционной идеи корпускул. Поначалу, конечно, коллегию немало удивило: как посередине тени от экрана может появиться светлое пятно? Однако опыт показал, что именно так и есть, и ученые вынуждены были признать волновую теорию Френеля.

Последняя точка в споре адептов волн и корпускул была поставлена в середине XIX в., когда француз Ж. Б. Фуко с помощью вращающегося зеркала измерил скорость световых лучей в воде, сравнил ее со скоростью в воздухе и продемонстрировал, что более плотная среда (вода) замедляет потоки света. Это означало одно: свет имеет волновую природу, ведь если бы он состоял из частиц, то в оптически плотной среде — как утверждала корпускулярная теория — должен был бы ускориться.

Теория Френеля вполне соответствовала как закону Снеллиуса, так и принципу наименьшего времени Ферма: для «путешествия» из пункта А в пункт В (даже если эти точки лежат в разных средах) луч всегда выбирает путь, наименее затратный по времени, то есть минимальной оптической длины. Об этом писал еще античный ученый Птолемей Александрийский, который прославился работами в области оптики. Можно сказать, греки и были теми, кто впервые открыл, что свет — это волна.

Оставить эмоцию
Нравится Тронуло Ха-Ха Ого Печаль Злюсь
Поддержите проект Мир Знаний, подпишитесь на наш канал в Яндекс Дзен

Оставить комментарий

avatar
  Подписаться  
Уведомление о