Теория расширения Вселенной и законы Хаббла

Об американском астрономе Эдвине Хаббле (1889—1953) слышали абсолютно все: его именем назван телескоп, летающий в космосе и передающий прямо оттуда фото разнообразных космических объектов и разноцветных причудливых туманностей. Однако мало кому известно, почему телескоп получил фамилию именно этого ученого, а ведь Хаббл и был тем кто открыт другие галактики (помимо нашего Млечного Пути) и высказал догадку о расширении Вселенной.

В начале 1920-х Хаббл работал в калифорнийской обсерватории Маунт-Вильсон расположенной почти на двухкилометровом возвышении и оборудованной мощным телескопом с 2.5-метровым зеркальным объективом. Разглядывая три разные туманности — Андромеды. Треугольника и Барнарда — молодой ученый высмотрел там отдельные звездочки и пришел к ошеломительному заключению: эти облака — не просто аморфные скопления газа и пыли, а целые галактики, подобные Млечному Пути! Ориентируясь на звезды, систематически меняющие яркость. Хаббл сумел определить расстояние до найденных галактик и заключить что они больше Млечного Пути. Данное открытие сразу же принесло Хабблу известность и уважение в научных кругах, а потом он сделал еще одно— и прославился на весь мир. Речь идет о законе, также названном в его честь — законе красного смешения.

В 1914 г. соотечественник Хаббла, Весто Слайфер, обнаружил, что в спектрах излучений галактик часто происходят сдвиги темных полос, демонстрирующих поглощение той или иной электромагнитной волны какими-либо химическими элементами. Сдвиг в сторону красных волн получил название красного смещения, а сдвиг в фиолетовую сторону был назван синим смещением. Слайфер определил степень смешения для разных галактик, а Хаббл вычислил расстояния до них и сравнил свои данные с данными коллеги. Все говорило о том что смешение напрямую зависит от отдаленности галактики: чем дальше она от Земли, тем больше черных линий концентрируется в красном поле спектра.

Вместе с тем Хаббл предположил, что с расстоянием скорость отдаления галактик повышается, а значит, линии в спектре должны смещаться еще больше. Ученый даже нашел формулу для вычисления скорости «убегания»: нужно умножить расстояние до галактики и дистанцию, на которую за секунду разойдутся две галактики, оказавшиеся за парсек (3×1019 км) одна от другой. (Вторая величина была названа постоянной Хаббла.)

Читать:  Магнитное поле Земли

Правда, сам ученый рассчитал эту постоянную неверно (у него вышло 500 км с Мпк, тогда как в действительности данный показатель равен всего 70). поскольку не учел важный момент: галактики двигаются не только в направлении расширяющейся Вселенной — не только убегают одна от другой, но и притягиваются силами гравитации. И смещение в их спектре складывается из этих двух смещений. Если галактики находятся относительно близко одна к другой, сила притяжения между ними перевешивает силу отталкивания, и соседки движутся навстречу — линии в их спектре сдвигаются в фиолетовую сторону. Между тем. если бы мы применили к ним формулу Хаббла, то вышло бы, что галактики отдаляются. А отдаляться они могут лишь при условии достаточно больших расстояний между ними, на которых гравитация значительно слабее сил расширения. Если принимать это во внимание, закон Хаббла вполне справедлив.

Как только Хаббл поделился своими мыслями с коллегами, один из них. Милтон Хьюмасон принялся исследовать известные туманности, открывая одну галактику за другой. Труд калифорнийских ученых был оценен по достоинству, хотя далеко не все осознавали его истинное значение. По сути ведь закон Хаббла доказывал теорию Большого взрыва, которую разработали бельгиец Жорж Леметр и россиянин Александр Фридман, и отображал свойство пространства двигаться и расширяться. (К слову, еще Атьберт Эйнштейн в рамках своей теории относительности высказал догадку о расширении и сжатии Вселенной, однако радикальность этой идеи напугала ученого, и он ввел искусственную константу, которая в расчетах сделала пространство статичным.) С помощью закона Хаббла астрофизики и поныне вычисляют длину пути до разных галактик, и на его основе было открыто космологическое красное смещение.

Читать:  Созвездия Цефей и Ящерица

К 40-м годам XX в. ученые уже выяснили, что во Вселенной постоянно происходит распад и синтез атомных ядер, в ходе чего одни элементы превращаются в другие и выделяют мощные потоки энергии. Также астрофизикам было известно, что вещество, из которого состоят звезды и межзвездная среда, содержит Уз водорода и Уз гелия и что ядра «построены» из нейтронов и протонов. На основе этих знаний были придуманы две версии развития Вселенной, различающиеся исходной пропорцией элементов межзвездного вещества и его температурой. Объединяла же обе версии идея равновесия: якобы все элементы вещества постепенно подстроились одно к другому так чтобы испускать и принимать одинаковое количество энергии, благодаря чему температура всех частиц выровнялась и обеспечила излучению стабильную плотность.

Еще в 1930-х родилась гипотеза холодной Веселенной: авторы данной версии полагали, будто сразу после рождения космическое пространство состояло из холодных частиц — нейтронов. Это. однако, не совпадало с опытными данными: свободные нейтроны очень быстро трансформируются в антинейтрино, электроны и протоны: последние, сталкиваясь с выжившими нейтронами, превращаются в разновидность водорода — дейтерий, а тот соединяется с собратом тритием и образует гелий. Но дальше процесс не идет, следовательно, если бы эта версия была верна, то вся Вселенная оказалась бы сплошь заполнена гелием. Нужно было придумать что-то другое, и ученые выдвинули противоположную гипотезу— горячей Вселенной. Тут уже слияние атомных ядер происходило в горячем веществе, правда, благодаря Хабблу Вселенная считалась ровесницей Солнечной системы, потому на подготовку исходного материала ученые не выделили времени. И то. что вся материя сформировалась в первые же секунды существования Вселенной, приняли как факт.

Уже в 40-х. осознав масштабы космоса, астрофизики «состарили» Вселенную по меньшей мере втрое, а такой почтенный возраст предполагал размеренный процесс «сборки» разных химических элементов внутри и на поверхности звезд. Однако гелия в космическом пространстве ровно треть, а это больше, чем могут произвести светила. Откуда же он взялся? В 1948 г. на этот вопрос попытался ответить русский физик Георгий Гамов с коллегами Робертом Херманом и Ральфом Альфером. Согласно их теории, в первую же долю секунды после рождения Вселенной ее вещество, состоявшее из разрозненных частиц и раскаленное до 30 лорд градусов, беспрерывно излучало фотоны (порции энергии). Благодаря очень высокой плотности они сталкивались и создавали пары заряженных частиц, те при столкновениях образовывали нейтральные частицы и выпускали опять-таки фотоны, а протоны и нейтроны при стычках с фотонами «менялись телами». Создавать цельные ядра они не могли, поскольку выплески энергии попросту разбивали бы их. Но по мере расширения Вселенной ее температура падала, частицы вели себя спокойнее, и протоны с нейтронами получали возможность объединяться в дейтерий, а из него уже образовывался гелий. Минут за пять синтезировалась та самая треть гелия, а все остальное пространство занял водород, построенный незадействованными протонами. Вселенная продолжила остывать, но на память ей осталась часть первородного горячего излучения.

Читать:  Обсерватория солнечной динамики

Позже был представлен еще один вариант «холодной» теории, предусматривавший на старте холодную смесь электронов, протонов и нейтрино, образовавших водород, который уже в составе звезд превратился в гелий. Чтобы выяснить, какова из представленных версий ближе всего к истине, астрофизикам следовало поискать предсказанное Гамовым первородное (реликтовое) излучение. И в 1960-х его нашли, причем абсолютно случайно!

Оставить эмоцию
Нравится Тронуло Ха-Ха Ого Печаль Злюсь
Поддержите проект Мир Знаний, подпишитесь на наш канал в Яндекс Дзен

Оставить комментарий

avatar
  Подписаться  
Уведомление о