Мутанты и гомеозисные гены — Мир Знаний

Мутанты и гомеозисные гены

Все мы немного мутанты, и у каждого своя ДНК, единственная и — не считая близнецов и клонов — неповторимая. Однако широкая публика привыкла мутантов бояться, представляя себе каких-нибудь несчастных жителей Марса из кинохита «Вспомнить всё»: с лишней рукой, недостающими ребрами или круто деформированным телом. Такие мутации тоже известны, и сегодня можно искусственно вырастить мух с ногами на голове или мышей с двумя верхними челюстями. Главное — правильно выбрать цель — небольшую группу очень важных генов, определяющих строение тела животных.

С тех пор как в 1906 году один из отцов-основателей современной генетики Томас Морган начал культивировать плодовых мушек, они стали одними из самых изученных животных на планете. Небольшие размеры, неприхотливость, а главное — короткий жизненный цикл сделали дрозофил популярной моделью для генетических исследований. Уже к середине XX века перед глазами ученых прошли мириады мушек с самыми странными проявлениями мутаций, с фиолетовыми или белыми глазами, без щетинок на голом теле… Но то, что увидел в конце 1940-х сотрудник Калифорнийского технологического института Эдвард Льюис, надолго зацепило его взгляд. У мухи была дополнительная пара крыльев, как у какой-нибудь бабочки.

Fig.1

История мухи: развитие

Льюис не первым обратил внимание на такое уродство — и задуматься было над чем. Организм животного развивается из одной клетки, и каждое новое поколение клеток несет тот же первоначальный набор хромосом и генов (за вычетом половых клеток, которые появляются не сразу). В разных тканях и частях тела активируется слегка разный набор генов — и клетки развиваются по разному сценарию. Одни образуют ножки дрозофилы, другие — ее антенны, третьи — крылья, повинуясь генам, которые дирижируют их ростом. Сбой в работе генов чреват для мухи серьезными нарушениями, например появлением дополнительной пары крыльев или ног, выросших между глаз, на месте антенн.

Таких нарушений правильного развития тела у дрозофилы известно немало. Льюис отметил, что они связаны с неправильным формированием целого сегмента — так, словно третий сегмент груди вдруг начинал считать себя вторым и спешно отращивал лишние крылья. Нашелся и ген Ubx, мутации в котором запускали развитие в неверном направлении. А вскоре у Ubx нашлись и родственники — еще два гена, расположенных на той же третьей хромосоме, по соседству с ним. И раз уж они делают один сегмент подобным другому, их так и назвали, только по латыни, — гомеозисными (Hox).

К началу 1980-х работы Льюиса и других ученых помогли найти все Hox-гены, мутации в которых делают одни сегменты тела мушки похожими на другие. Их оказалось восемь, и они образуют две тесные группы. Ubx и два других составляют комплекс Bithorax, который активируется в девяти задних сегментах тела дрозофилы. Пять остальных работают в сегментах груди и головы, образуя комплекс Antennapedia — самым знаменательным в этой группе оказался ген Antp; нарушив его работу, можно вырастить ноги на месте головных антенн. Самым интересным оказалось то, что Hox-гены располагаются в геноме строго в том же порядке, что и их сегменты в теле — от головы до кончика брюшка.

История животных: эволюция

В 1983 году швейцарские биологи нашли у гомеозисных генов дрозофилы неожиданную общую черту: все они имели небольшую, длиной всего около 180 нуклеотидов, но характерную последовательность, «гомеобокс». Этот удивительный фрагмент кодирует белковый домен из примерно 60 аминокислот, который связывается с ДНК и обнаруживается практически у всех животных, от морских звезд и до звезд эстрады. Почти с той же строгостью сохраняется у животных и порядок расположения Hox-генов на хромосоме. Такая консервативность говорит о важной роли, которые выполняют Hox-гены, и об их головокружительной древности.

Небольшие изменения гомеобокса, которые отличают одну группу животных от другой, позволили проследить их возможную историю вплоть до общего предка, который, скорее всего, имел базовую группу из четырех Hox-генов. Кишечнополостные в такой сложности не нуждаются, и они утеряли половину из них. Зато уже у предка билатеральных животных, жившего около 600 млн лет назад, они удвоились, и каждый взял на себя свои, слегка отличные от других функции. Такие усложнения происходили несколько раз, так что если у дрозофилы и прочих насекомых таких генов восемь, то у хордового ланцетника — уже 14. Максимальной численности Hox-гены достигли у позвоночных тетрапод — амфибий, рептилий, птиц и млекопитающих. Этот комплекс генов у нас существует в четырех похожих друг на друга копиях, так что даже с несколькими потерями их общее число превысило 30. В самом деле, хотя сегментированность нашего тела со стороны не так заметна, как у червей или насекомых, она существует, и Hox-гены определяют, будут ли позвонки соединяться с ребрами или вовсе срастутся в копчик. Мутация в Hox 10 у мышей заставляет их отращивать ребра даже на животе.

История ящерицы: регенерация

Несколько лет назад петербургские биологи изучили работу Hox-генов кольчатого червя-нереиса в состоянии личинки и взрослого организма. Оказалось, что если у личинки работа их проходит по классической, знакомой еще по мушкам схеме, то у взрослого червя она резко меняет программу. Вместо того чтобы каждый Hox-ген активировался в своем сегменте, они включаются везде и отличаются лишь степенью активности. Предполагается, что это позволяет нереису, потерявшему хвостовые сегменты, благополучно отращивать себе новые.

Такая картина — вовсе не новость даже для куда более сложно устроенных позвоночных. Многие рептилии и амфибии, известные способностями регенерировать утраченные хвосты и даже конечности, используют для этого те же гомеозисные гены. Детали данного механизма еще плохо понятны, однако известно, что даже почти одинаковые, дуплицированные Hox-кластеры у саламандр несут разные интроны — некодирующие вставки внутри генов, которые обеспечивают более широкие возможности регуляции их активности. Возможно, такие «усовершенствования» играют важную роль в работе Hox-генов при регенерации конечностей.

Вообще, несмотря на небольшие различия, Hox-гены исключительно консервативны и остаются очень похожими даже у таких неблизких групп животных, как насекомые и млекопитающие. Заменив один из них у дрозофилы на гомологичный, взятый у мыши, можно вырастить совершенно нормальную мушку. Тем более сходны они у людей и рептилий.

И если уж ящерицы благодаря им способны, не моргнув глазом, вырастить себе новый хвост вместо откушенного, то поможет ли точная регуляция Hox-генов людям? Исследования в этом направлении уже ведутся, и если когда-нибудь человеку восстановят потерянный палец или даже целую руку, стоит вспомнить, что начало всему положила история мух с ногами на голове.

Вам понравится

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Поделиться записью в соц. сетях