Квантовая запутанность

Явление квантовой запутанности и связанная с ним идея множественности миров кажется чем-то фантастическим. Однако это вполне научные понятия, которые имеют практическое применение.

Вся квантовая механика неразрывна с теорией вероятности. Квантовая частица не имеет четких физических характеристик вроде скорости, энергии, координат, момента импульса, определяющего количество вращательного движения, и пр. Поэтому описать квантовую частицу (например, квантон — квант пространства-времени) способна только волновая функция, которая имеет вид амплитуды возможности того, что частица пребывает в некоторой точке, либо движется с определенной скоростью, либо наполнена тем или иным количеством энергии. То, что частица может находиться в заданном месте в заданный момент времени, показывает квадрат абсолютной величины (расстояния между началом системы координат и предполагаемой точкой) ее волновой функции. Как правило, частица словно «размазывается» в пространстве, так что данных о ее возможном местоположении может быть бесконечно много.

Однако еще в прошлом веке ученые сомневались: вдруг каждый квантовый объект все же имеет точные координаты, просто частиц слишком много, и это вынуждает делать лишь статистические описания разницы между их характеристиками? Так, А. Эйнштейн, Б. Подольский и Н. Розен не считали нужным описывать вероятностное поведение отдельных частиц, поскольку это якобы противоречит физической реальности. Между тем основатели квантовой теории Н. Бор, В. Гейзенберг и Э. Шрёдингер были не согласны с таким мнением и уверяли, будто каждая частица ведет себя абсолютно неопределенно.

В 1927 г. на 5-м Сольвеевском конгрессе Эйнштейн поспорил с Бором, ратуя за то, что при одних и тех же исходных данных квантовые явления протекают одинаково и наблюдатель никак не влияет на результат своих измерений. Бор, со своей стороны, доказывал, что все процессы в квантовом мире непредсказуемы и их результат может меняться в зависимости от действий наблюдателя. Собственно, речь в том споре шла о так называемой квантовой запутанности — зависимости, возникающей, к примеру, при столкновении частиц и прочих взаимодействиях. Так, в молекуле спутаны две подсистемы: ядро и электроны, — первое вращается вокруг своей оси, а вторые двигаются вокруг в ту же сторону. Два квантона можно считать спутанными, когда на основе знаний об одном из них мы способны определить характер другого. Один имеет красный заряд? Значит, у другого заряд тоже красный. Первый двигается прямо? Значит, и второй летит в том же направлении.

Читать:  Второй закон термодинамики

В то же время информация о заряде первого квантона ничего не может сказать нам о направлении движения второго. То есть можно измерить заряд (или импульс, или скорость) частицы — и при этом утратить все данные о направлении ее движения. Либо же определить ее направление, но потерять данные о заряде. В квантовом мире невозможно измерить несколько параметров одновременно, поэтому картина никогда не бывает полной. Всегда нужно учитывать взаимоисключающие факторы. Такова была основная мысль Бора, который назвал это «принципом дополнительности».

Эйнштейн в ответ бросил свою известную фразу: «По крайней мере, я уверен — Бог не играет в кости», — а Бор парировал: «Альберт, не указывай Богу, что ему делать». В конце концов Эйнштейн с сарказмом спросил: «Ты что, считаешь, будто Луна существует только тогда, когда ты на нее смотришь?»

Пытаясь доказать свою точку зрения, Эйнштейн, Подольский и Розен (EPR) в 1935 г. написали статью «Можно ли считать квантово-механическое описание физической реальности полным?», где представили так называемый EPR-парадокс. Суть его в том, что, имея две частицы одинакового происхождения, мы можем измерить характер одной частицы и по этим данным автоматически определить соответствующее свойство другой. Скажем, при излучении фотонов X и Z и та и другая волна в равной мере может быть направлена горизонтально или вертикально (распространяться «стоя» или «лежа»), однако если мы выявим горизонтальную поляризацию фотона X, то сразу поймем, что Z поляризован вертикально. Данное правило работает даже тогда, когда объекты находятся на большом расстоянии один от другого: частицы, пребывающие в разных уголках Вселенной, каким-то образом согласовывают свое поведение, а это противоречит теории относительности Эйнштейна о том, что скорость распространения информации не может превысить скорость света. Сам ученый назвал такой эффект «пугающим дальнодействием».

Читать:  Волна де Бройля

Собственно, термин «спутанный» для обозначения взаимосвязанных квантовых систем придумал Э. Шрёдингер. Правда, сам он полагал, что зависимость между частицами может возникнуть лишь тогда, когда они находятся рядом и контактируют непосредственно.

Вскоре после выхода статьи Эйнштейна в прессе появился ответ Бора, и все его единомышленники решили, что EPR-парадокс — это всего лишь ошибка ученых, которые неверно понимают роль наблюдателя в квантовой физике. На протяжении последующих 30 лет научная общественность упорно закрывала глаза и на «спутанность», и на «жуткие дальнодействия». А потом за дело взялся ирландский физик Джон Белл и, проанализировав пресловутый парадокс, вывел два неравенства, основанных на мысли, что изначально каждая отдельная частица имеет четкие значения всех свойств, и эти свойства отличают ее от других систем.

Экспериментально проверить неравенства Белла впервые смогли Дж. Клаузер и С. Фридман в 1972 г. (до того техника не позволяла проводить такие исследования). Результаты показали, что до измерений свойств частиц их состояние было неопределенным, но стоило найти один параметр одной из частиц, как ситуация изменилась. Несмотря на это, до 1980-х большинство физиков воспринимали квантовую спутанность «не как новый полезный ресурс, а как конфуз, требующий полного разъяснения».

В 1981 г. французский физик А. Аспе провел собственный эксперимент, направив два потока фотонов на призмы. Произошло двойное преломление лучей, и каждый фотон распался на более тонкие пучки, которые попали на детекторы. Оттуда сигналы пошли в регистрирующее устройство, производившее вычисления неравенств Белла, и стало понятно, что фотоны даже на расстоянии координируют поведение «собратьев». Пугающее «дальнодействие» оказалось вполне реальным.

Восемь лет спустя американские физики Дэниел Гринбергер, Майкл Хорн и Антон Цайлингер (GHZ) поставили интересный опыт, показавший еще один пример запутанности. Ученые сцепили три фотона (GHZ-состояние), и каждый взял себе одного «подопытного». Затем независимо друга от друга исследователи несколько раз измерили какое-либо одно свойство своей частицы, выбранное наобум, а все полученные данные записали. Сравнение результатов их очень удивило. Фотоны меняли свои свойства в зависимости от способа измерений и от того, в какой комбинации исследовались их параметры.

Читать:  Электричество: положительное и отрицательное

По словам ученого С. Колмана, эффектом GHZ «квантовая механика отвесила оплеуху классической физике», разрушив традиционные представления о том, что у всех объектов есть определенные качества, независимые от измерений. И если поначалу запутанность была присуща исключительно микромиру, то в наше время сверхчувствительная аппаратура позволила ученым провести эксперименты на макроуровне. В 2008 г. итальянские физики во главе с Фабио Шаррино сцепили два фотона, а потом «размножили» один из них до тысячи частиц, вследствие чего микрообъект оказался связанным с макрообъектом — световым потоком.

Позже нечто подобное проделали женевские ученые под руководством Николаса Гизина. Один фотон из спутанной пары отправился на детектор, а второй превратился в поток фотонов, распространяющихся в одной плоскости. С помощью неравенств Белла исследователи проверили, совпадают ли поляризации потока и единичного фотона, — и получили утвердительный ответ. В ближайшем будущем физики планируют соединить фотон и луч лазера.

Недаром Шрёдингер говорил, что эволюция квантовых систем может привести к очень неожиданным результатам. Своим мысленным экспериментом с котом, помещенным в закрытый ящик вместе с радиоактивным атомом, счетчиком Гейгера и колбой с ядовитым газом, ученый проиллюстрировал неопределенность в квантовом мире. Ведь если атом распадется, а счетчик засечет это и разобьет колбу, — то кот умрет. Но атом может и не распасться, и кот останется жив. Оба варианта существуют одновременно в параллельных мирах возможностей.

Оставить эмоцию
Нравится Тронуло Ха-Ха Ого Печаль Злюсь
Поддержите проект Мир Знаний, подпишитесь на наш канал в Яндекс Дзен

6
Оставить комментарий

avatar
5 Цепочка комментария
1 Ответы по цепочке
0 Последователи
 
Популярнейший комментарий
Цепочка актуального комментария
2 Авторы комментариев
Марина Мыльниковавиктор Авторы недавних комментариев
  Подписаться  
новее старее большинство голосов
Уведомление о
виктор
Гость
виктор

Автор данной статьи выдвигает идею о том, что время-пространство изначально само по себе, объективно имеет единую природу, динамичную единую форму, проявляющую себя, естественно, на уровне микро-и макромира. Это уже более чем время-пространство, это уже время-пространство-энергия-материя. Или единая первичная элементарная частица (ЕПЭЧ), проявляющая себя как новый научный закон. Доказательство этого положения осуществляется методом построения некой динамической модели времени-пространства-энергии-материи с последующей проверкой ее при объяснении многих современных вопросов квантовой физики и космологии. Скорее всего, можно считать, что единственно приемлемым и единственно возможным первоисточником энергии-материи является замкнутое время – время движется по кругу в пространстве или некая сила замкнутая сама на себя. Основное… Подробнее »

Марина Мыльникова
Гость
Марина Мыльникова

Первоначально существовал мир максимально низкого энергетического уровня, и в нем присутствовало сознание БОГА. Сегодня, когда мы воочию увидели, как наблюдение меняет «поведение» квантовых частиц, можно уже так же достоверно увидеть ход развития мира в начальном периоде. Если сознание человека изменяет квантовый мир, то это доказательство того, что физическое состояние мира так же может быть изменено сознанием, тем более высшим. Сознание уже есть излучение, то есть материя, и как в нашем сознании поляризуются созидание и разрушение, так же БОГ отделил свет от тьмы, то есть низкое энергетическое состояние от высокого. Сознание БОГА СТАЛО «плоскостью зеркала» отделяющей внутреннюю тьму мира, от созданного… Подробнее »

Марина Мыльникова
Гость
Марина Мыльникова

https://www.youtube.com/watch?v=bZGQsd3XPzU
Каналы акупунктуры могут «продуцировать» зонд времени, который может проникнуть в прошлое или будущее. а так же в параллельное существование данной личности.

Марина Мыльникова
Гость
Марина Мыльникова

Для Вселенной все, что происходит на уровне микромира, может произойти и на уровне, например, человеческих тел, так как человеческое тело и его жизнь для не имеющей размеров и пределов времени Вселенной всего лишь блеснувший фотон… Поэтому и люди могут обладать двойными свойствами, а именно, существовать как частица и как волновая функция. Причем в полевой форме существования человек получает все свойства чистой энергии и ее могущество. Жаль только, что направление развития нашего мира диктуется горсткой индивидов из мирового правительства, не желающей войти в эти прекрасные двери, да и другим не дающая…

Марина Мыльникова
Гость
Марина Мыльникова

Для Вселенной все, что происходит на уровне микромира, может произойти и на уровне, например, человеческих тел, так как человеческое тело и его жизнь для не имеющей размеров и пределов времени Вселенной всего лишь блеснувший фотон… Поэтому и люди могут обладать двойными свойствами, а именно, существовать как частица и как волновая функция. Причем в полевой форме существования человек получает все свойства чистой энергии и ее могущество. Жаль только, что направление развития нашего мира диктуется горсткой индивидов из мирового правительства, не желающей войти в эти прекрасные двери, да и другим не дающая… Не напоминает вид вероятности фотона вам уравнение Льюиса Кэролла? Точно… Подробнее »

Марина Мыльникова
Гость
Марина Мыльникова

Просьба при использовании моих комментов указывать источник. Воровство опасно для здоровья.