История открытия и изучения фотосинтеза

Фотосинтез — один из важнейших биологических процессов, протекающих в природе, ведь именно благодаря ему происходит образование органических веществ из углекислого газа и воды под действием света, а главное — выделяется кислород.

История изучения фотосинтеза началась в 1600 г., когда бельгийский ученый Ян Ван Гельмонт провел несложный эксперимент — поместил веточку ивы (предварительно измерив ее вес) в мешок с 80 кг земли и на протяжении пяти лет поливал дождевой водой. За это время вес ивы увеличился на 65 кг, при том что масса земли уменьшилась всего на 50 г. Откуда взялась столь внушительная прибавка в весе, для ученого осталось загадкой.

Следующий шаг к открытию фотосинтеза был сделан Джозефом Пристли в 1771 г. Он поместил мышь под колпак и через пять дней увидел, что та умерла. Тогда он посадил под колпак еще одну мышь, но рядом с ней положил веточку мяты — и в итоге мышь осталась живой. Это навело ученого на мысль, что существует некий процесс, противоположный дыханию, и что зеленые растения способны очищать и восстанавливать воздух, «испорченный» животными. Через несколько лет после этого открытия Пристли опытным путем узнал о существовании кислорода и понял — первая мышь умерла от его отсутствия, а вторая выжила благодаря веточке мяты, которая выделяла этот важный элемент.

В 1782 г. швейцарский ученый Ж. Сенебье доказал, что углекислый газ (СО2) под воздействием света разлагается в зеленых органоидах растений — хлоропластах. А пять лет спустя французский ученый Ж. Буссенго обнаружил, что растения поглощают воду не только при разложении, но и при синтезе органических веществ.

Тем не менее исследователи второй половины XIX — начала ХХ в. рассматривали фотосинтез как одноактный процесс разложения углекислого газа посредством хлорофилла — сложного органического соединения, которое придает листьям зеленую окраску и поглощает солнечный свет. В 1864 г. немецкому ботанику Ю. Саксу удалось рассчитать пропорцию потребляемого углекислого газа и выделяемого кислорода — 1:1. Таким образом, была выведена общая формула этого процесса: вода + углекислый газ + свет → углеводы + кислород (6СО2 + 6Н2О → С6Н12О6 + 6О2).

Читать:  Фараон неведомой династии

В 1871 г. К. Тимирязев высказал идею о том, что в ходе фотосинтеза хлорофилл подвергается обратимым окислительно-восстановительным превращениям. В 1905 г. английский физиолог растений Фредерик Блэкман установил основные этапы фотосинтеза, показав, что процесс начинается при слабом освещении и с увеличением светового потока скорость реакций возрастает, однако на определенном этапе дальнейшее усиление освещения уже не приводит к повышению активности фотосинтеза; что повышение темпера-туры при слабом освещении не влияет на скорость фотосинтеза, но при одновременном повышении температуры и усилении освещения скорость процесса растет гораздо заметнее, чем при одном лишь усилении освещения. На основании этих экспериментов Блэкман заключил, что происходят два процесса: первый зависит от уровня освещения, а не от температуры, тогда как второй определяется температурой независимо от яркости света. Позже два процесса получили название «световой» и «темновой» фаз, что не вполне корректно: хотя реакции «темновой» фазы идут и при отсутствии света, но для них необходимы продукты «световой» фазы.

В 1930-х появились высказывания о том, что поглощаемая хлорофиллом энергия света должна быть направлена не на разложение СО2, а на разрыв одной связи ОН в молекуле -воды. Доказательства данного предположения были получены в 1941 г., и решающую роль при этом сыграли исследования с использованием изотопов кислорода (16О, 17О и 18О), соотношения между которыми в воде, атмосфере и углекислом газе неодинаковы.

В 1945 г. А. Виноградова и Р. В. Тейс обнаружили совпадение изотопного состава кислорода природной воды и синтезированной из водорода и кислорода, выделяемого зеленым листом на свету (фотосинтетического). С. Рубен и М. Камен применили в исследованиях иной принцип. Сначала они дали водорослям воду, обогащенную 18О, ― и растения выделили кислород с очень высокой концентрацией этого изотопа. Затем ученые «подкормили» водоросли углекислым газом, также обогащенным 18О, ― однако на выделенном кислороде это не сказалось. Тогда-то и стало ясно, что основная масса кислорода, выделяемого при фотосинтезе, принадлежит воде, то есть место имеет не разложение СО2, а распад молекулы воды, вызываемый энергией света.

Читать:  Гибель Бориса и Глеба - тайны Рюриковичей

Собственно, расщепление воды происходит в первой, «световой» фазе фотосинтеза. Еще в 1930-х это показал К. Б. ван Ниль в ходе изучения пурпурной серобактерии, которой для фотосинтеза нужен сероводород (H2S). Как оказалось, в качестве побочного продукта жизнедеятельности бактерия выделяет атомарную серу, а уравнение ее фотосинтеза выглядит так: СО2 + Н2S + свет → углевод + 2S.

Поскольку у серобактерий, в чьем метаболизме роль кислорода играет сера, фотосинтез возвращает эту серу, ван Ниль предположил, что в любом фотосинтезе источником кислорода является не углекислый газ, а вода. Последующие исследования подтвердили: первой стадией процесса является расщепление молекулы воды. Само улавливание энергии состоит из двух этапов и осуществляется в раздельных кластерах молекул — фотосистеме I и фотосистеме II. Номера кластеров отражают порядок, в котором эти процессы были открыты, однако реакции происходят сначала в фотосистеме II и лишь затем — в фотосистеме I.

Итак, процесс запускается в фотосистеме II, когда излучаемые солнцем фотоны попадают в молекулы хлорофилла, содержащиеся в мембранах клеточных органелл хлоропластов. Фотон сталкивается с 250—400 молекулами фотосистемы II, и энергия, резко возрастая, передается молекуле хлорофилла. В результате молекула хлорофилла теряет два электрона (которые принимает другая молекула — акцептор электронов), а молекула воды распадается, и электроны ее атомов водорода возмещают электроны, потерянные хлорофиллом.

Читать:  Первая советско-финская война. Они хотели Великую Финляндию... от Урала до Поволжья!

После этого выстроенные цепочкой молекулы-переносчики быстро перебрасывают электроны на более высокий уровень, и часть выделенной энергии идет на образование аденозинтрифосфата (АТФ) — одного из основных аккумуляторов энергии в клетке. Тем временем молекула хлорофилла фотосистемы I поглощает фотон и отдает электрон другой молекуле-акцептору, а на место утерянной заряженной частицы встает электрон, прибывший по цепи переносчиков из фотосистемы II. Энергия электрона фотосистемы I и ионы водорода, образовавшиеся при расщеплении воды, идут на образование НАДФ-Н — еще одного источника энергии.

После того как солнечная энергия поглощена и запасена, наступает черед образования глюкозы. Основной механизм синтеза сахаров в растениях был открыт Мелвином Калвином, который в 1940-х вырастил водоросль в присутствии углекислого газа, содержащего радиоактивный углерод-14. Прерывая фотосинтез на разных стадиях, ученый установил химические реакции «темновой» фазы и открыл так называемый цикл Калвина — процесс превращения солнечной энергии в глюкозу.Сначала молекулы углекислого газа соединяются с «помощником» — пятиуглеродным сахаром рибулозодифосфатом (РДФ). Затем за счет энергии солнечного света, запасенной в АТФ и НАДФ-H, происходит шестиуровневая цепочка реакций связывания углерода с образованием глюкозы, выделением кислорода и воссозданием РДФ.

Очевидно, что обеспечение кислородом земной атмосферы — далеко не единственная цель фотосинтеза. Этот биологический процесс необходим не только людям и животным, но и самим растениям, основу жизнедеятельности которых составляют органические вещества, образующиеся в ходе фотосинтеза.

Поддержите проект Мир Знаний, подпишитесь на наш канал в Яндекс Дзен

Оставить комментарий

avatar
  Подписаться  
Уведомление о